81 research outputs found

    Intent-based zero-touch service chaining layer for software-defined edge cloud networks

    Get PDF
    Edge Computing, along with Software Defined Networking and Network Function Virtualization, are causing network infrastructures to become as distributed clouds extended to the edge with services provided as dynamically established sequences of virtualized functions (i.e., dynamic service chains) thereby elastically addressing different processing requirements of application data flows. However, service operators and application developers are not inclined to deal with descriptive configuration directives to establish and operate services, especially in case of service chains. Intent-based Networking is emerging as a novel approach that simplifies network management and automates the implementation of network operations required by applications. This paper presents an intent-based zero-touch service chaining layer that provides the programmable provision of service chain paths in edge cloud networks. In addition to the dynamic and elastic deployment of data delivery services, the intent-based layer offers an automated adaptation of the service chains paths according to the application's goals expressed in the intent to recover from sudden congestion events in the SDN network. Experiments have been carried out in an emulated network environment to show the feasibility of the approach and to evaluate the performance of the intent layer in terms of network resource usage and adaptation overhead

    Intent-based network slicing for SDN vertical services with assurance: Context, design and preliminary experiments

    Get PDF
    Network slicing is announced to be one of the key features for 5G infrastructures enabling network operators to provide network services with the flexibility and dynamicity necessary for the vertical services, while relying on Network Function Virtualization (NFV) and Software-defined Networking (SDN). On the other hand, vertical industries are attracted by flexibility and customization offered by operators through network slicing, especially if slices come with in-built SDN capabilities to programmatically connect their application components and if they are relieved of dealing with detailed technicalities of the underlying (virtual) infrastructure. In this paper, we present an Intent-based deployment of a NFV orchestration stack that allows for the setup of Qos-aware and SDN-enabled network slices toward effective service chaining in the vertical domain. The main aim of the work is to simplify and automate the deployment of tenant-managed SDN-enabled network slices through a declarative approach while abstracting the underlying implementation details and unburdening verticals to deal with technology-specific low-level networking directives. In our approach, the intent-based framework we propose is based on an ETSI NFV MANO platform and is assessed through a set of experimental results demonstrating its feasibility and effectiveness

    Resource orchestration strategies with retrials for latency-sensitive network slicing over distributed telco clouds

    Get PDF
    The new radio technologies (i.e. 5G and beyond) will allow a new generation of innovative services operated by vertical industries (e.g. robotic cloud, autonomous vehicles, etc.) with more stringent QoS requirements, especially in terms of end-to-end latency. Other technological changes, such as Network Function Virtualization (NFV) and Software-Defined Networking (SDN), will bring unique service capabilities to networks by enabling flexible network slicing that can be tailored to the needs of vertical services. However, effective orchestration strategies need to be put in place to offer latency minimization while also maximizing resource utilization for telco providers to address vertical requirements and increase their revenue. Looking at this objective, this paper addresses a latency-sensitive orchestration problem by proposing different strategies for the coordinated selection of virtual resources (network, computational, and storage resources) in distributed DCs while meeting vertical requirements (e.g., bandwidth demand) for network slicing. Three orchestration strategies are presented to minimize latency or the blocking probability through effective resource utilization. To further reduce the slice request blocking, orchestration strategies also encompass a retrial mechanism applied to rejected slice requests. Regarding latency, two components were considered, namely processing and network latency. An extensive set of simulations was carried out over a wide and composite telco cloud infrastructure in which different types of data centers coexist characterized by a different network location, size, and processing capacity. The results compare the behavior of the strategies in addressing latency minimization and service request fulfillment, also considering the impact of the retrial mechanism.This work was supported in part by the Department of Excellence in Robotics and Artificial Intelligence by Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) to Scuola Superiore Sant’Anna, and in part by the Project 5GROWTH under Agreement 856709

    Disaggregated optical network control and orchestration of heterogeneous domains

    Get PDF
    Network softwarization and disaggregation are two trends that are revolutionizing the network-cloud ecosystem. This paper details possible solutions to control and monitor an infrastructure including an IoT domain, a Cloud domain and a packet-optical network domain

    Latency-aware resource orchestration in SDN-based packet over optical flexi-grid transport networks

    Get PDF
    In the upcoming 5G networks and following the emerging Software Defined Network/Network Function Virtualization (SDN/NFV) paradigm, demanded services will be composed of a number of virtual network functions that may be spread across the whole transport infrastructure and allocated in distributed Data Centers (DCs). These services will impose stringent requirements such as bandwidth and end-to-end latency that the transport network will need to fulfill. In this paper, we present an orchestration system devised to select and allocate virtual resources in distributed DCs connected through a multi-layer (Packet over flexi-grid optical) network. Three different on-line orchestration algorithms are conceived to accommodate the incoming requests by satisfying computing, bandwidth and end-to-end latency constraints, setting up multi-layer connections. We addressed end-to-end latency requirements by considering both network (due to propagation delay) and processing delay components. The proposed algorithms have been extensively evaluated and assessed (via a number of figures of merit) through experimental tests carried out in a Packet over Optical Flexi-Grid Network available in the ADRENALINE testbed with emulated DCs connected to it.This work has been partially funded by the EC H2020 5GTransformer Project (grant No. 761536)

    Latency-Aware Network Service Orchestration over an SDN-Controlled Multi-Layer Transport Infrastructure

    Get PDF
    In this paper, we present latency-aware orchestration strategies that jointly consider satisfying both the allocation of computing resources (in distributed DCs) and the bandwidth and latency networks requirements, which are experimentally evaluated within a Multi-Layer (Packet over Optical Flexi-Grid) Transport Network and considering different DC set-ups and capabilities.This work is partially funded by the EU H2020 5G TRANSFORMER project (761536)

    An experimental study on latency-aware and self-adaptive service chaining orchestration in distributed NFV and SDN infrastructures

    Get PDF
    Network Function Virtualization (NFV) and Software Defined Networking (SDN) changed radically the way 5G networks will be deployed and services will be delivered to vertical applications (i.e., through dynamic chaining of virtualized functions deployed in distributed clouds to best address latency requirements). In this work, we present a service chaining orchestration system, namely LASH-5G, running on top of an experimental set-up that reproduces a typical 5G network deployment with virtualized functions in geographically distributed edge clouds. LASH-5G is built upon a joint integration effort among different orchestration solutions and cloud deployments and aims at providing latency-aware, adaptive and reliable service chaining orchestration across clouds and network resource domains interconnected through SDN. In this paper, we provide details on how this orchestration system has been deployed and it is operated on top of the experimentation infrastructure provided within the Fed4FIRE+ facility and we present performance results assessing the effectiveness of the proposed orchestration approach

    Slice Isolation for 5G Transport Networks

    Get PDF
    Network slicing plays a key role in the 5G ecosystem for vertical industries to introduce new services. However, one widely-recognized challenge of network slicing is to provide traffic isolation and concurrently satisfy diverse performance requirements, e.g., bandwidth and latency. In this work, we showcase the capability to retain these two goals at the same time, via extending the 5Growth baseline architecture and designing a new data-plane pipeline, i.e., virtual queue, over the P4 switch. To demonstrate the effectiveness of our approach, a proof-of-concept is presented serving different service requests over a mixed data path, including P4 switches and Open vSwitches (OvSs)
    • …
    corecore